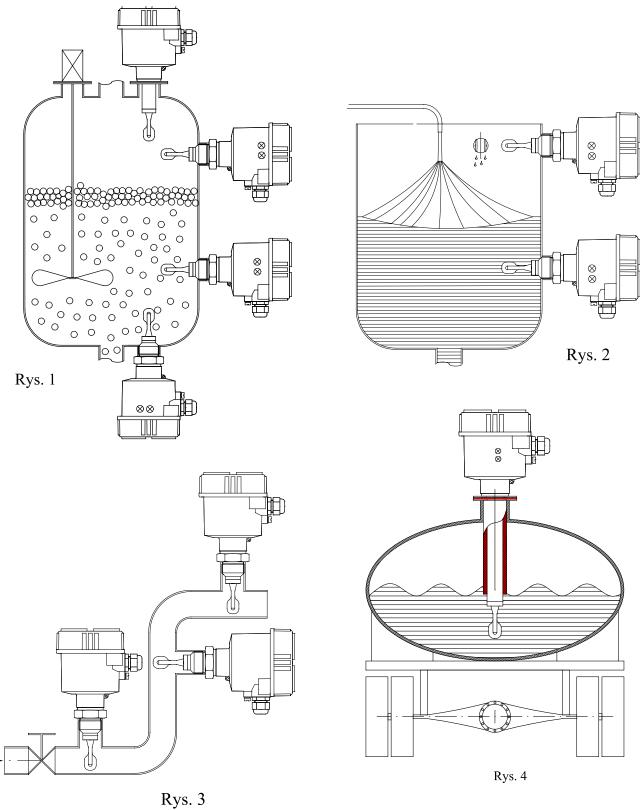
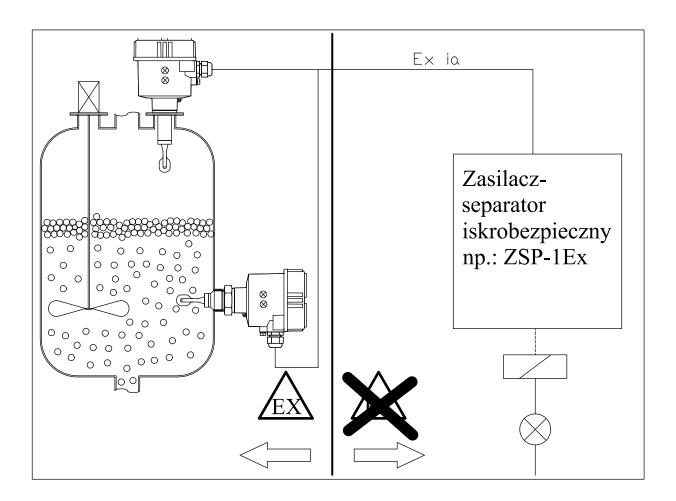


Вибрационный датчик уровня


Содержание

- 1. Применение
- 2. Конструкция
- 3. Принцип работы
- 4. Конструкторские версии WSP-5
- 5. Технические данные
- 6. Питание и выход
- Передняя панель

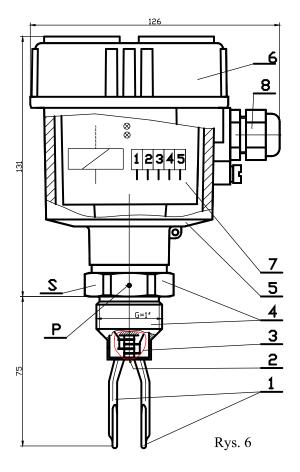
- 8. Регулировка и настройки
- Выбор датчика с учётом температуры жидкости и температуры окружающей среды
- 10. Точки переключения
- 11. Крепление
- 12. Ввод в эксплуатацию
- 13. Дополнительная информация


1. Применение

Вибрационные датчики уровня WSP-5 предназначены для сигнализации предельных уровней жидкостей в напорных или открытых резервуарах, а также могут сигнализировать о потоке или наличии жидкости в трубопроводах. Они применимы к жидкостям с температурой до 290°С и давлением 5 МПа. Не используйте датчики для жидкостей, которые склонны к гелеобразованию образованию отложений на вибрирующих вилках. Примеры применения датчиков WSP-5:

На рисунке 1 показано применение датчиков для сигнализации уровня жидкости в смесителе. Индикаторы работают правильно, несмотря на смешивание жидкости, пены на поверхности жидкости и при наличии в жидкости твёрдых частиц с зернистостью, которые не будут блокировать колебания вибрирующих вилок. На рисунке 2 показана сигнализация уровня вязкой жидкости. В этом случае изменение состояния сигнализации произойдёт, когда жидкость потечёт из пространства между вибрирующими вилками. Рисунок 3 показывает использование вибрационных датчиков для сигнализации о наличии жидкости в трубопроводе. На рисунке 4 показан способ установки датчиков на автоцистернах. Из-за больших моментов инерции, создаваемых движущейся жидкостью, по всей длине использовалась обсадная труба.

Вибрационный датчик WSP-5 используется для зон, подверженных опасности взрыва газа, пара или дыма, чаще всего с взрывозащитой посредством взрывозащищённого корпуса или искробезопасной установки. На рисунке 5 показан датчик Ехіа, установленный во взрывоопасной зоне, с питанием от искробезопасного барьера, расположенного в безопасной зоне. Когда датчик защищён взрывозащищённым корпусом Ех, источник питания не имеет искробезопасного барьера. В обоих случаях используются соответствующие типы кабелей и их длина.


Rys. 5. Датчик WSP-5 во взрывоопасных зонах.

1/2020 3/19

2. Конструкция

Датчики WSP-5A состоят из вибрирующих вилок 1, мембраны 2, резонатора 3, корпуса 4, корпуса с электроникой 5, крышки 6, электронного модуля 7 и кабельного входа 8. Элементы датчика, контактирующие с жидкостями, изготовлены из стали 316L.

Для работы с агрессивными жидкостями их можно дополнительно покрыть фторсодержащими материалами. Корпуса с электроникой изготавливаются из аллюминия или ABS. Датчики имеют релейные или транзисторные выходы.

3. Принцип работы

После подключения источника питания резонатор питается от генератора, расположенного в модуле электроники. Исполнительные элементы резонатора представляют собой стопку пьезокерамических пластин. С внутренней стороны мембраны прикреплён резонатор, а снаружи на мембране расположены две вибрирующие вилки. Прямые и обратные пьезоэффекты использовались для создания колебаний вибрирующих вилок. При выдавливании элемента мембраны свободные концы вилок открываются наружу. С другой стороны, когда мембрана не выталкивается из-за напряжений в мембране, мембрана возвращается в своё положение равновесия и вибрирующие вилки качаются внутрь из-за сил энерции. Вибрационные вилки колеблются в воздухе с резонансной частотой. Погружение вибрирующих вилок в жидкость заставляет колебания стержня отделяться от резонансной частоты. Когда расстройка превышает установленный порог, электронная система перегрузит транзистор или реле и изменит свечение одного из двух светодиодов. Если уровень жидкости опускается ниже уровня вибрирующих вилок, частота колебаний стержней возвращается к резонансной частоте. Транзистор или реле сбрасываются и светодиодный индикатор меняется, сообщая, что жидкость находится ниже вибрирующих вилок. Правильность работы датчика можно проверить с помощью постоянного магнита, приблизив его к соответствующему месту возле корпуса или прикоснувшись рукой к вибрирующим вилкам. Смена свечения светодиодов сигнализирует о перегрузке. В этом случае постоянный магнит или рука имитируют жидкость.

I/2020 4/19

4. Конструкторские версии WSP-5

Датчики вибрационные двухвилочные WSP-5 выпускаются в следующих исполнениях:

- WSP-5A короткий, (компактный)
- WSP-5B удлинённый
- WSP-5C высокотемпературный с тепловым расстоянием
- WSP-5D с регулируемой высотой для монтажа в сальник G=1,5"
- WSP-5E с электроникой отдельно от датчика, кабель до 8м
- WSP-5Y специальная версия по желанию заказчика

5. Технические данные

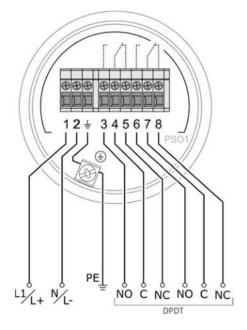
Таблица 1. Технические параметры датчиков WSP-5.

Диапазон рабочих температур для WSP-5A,B,D,E	-40+150°C
Диапазон рабочих температур для WSP-5C1:	-40+200°C
Диапазон рабочих температур для WSP-5C2:	-40+290°C
Диапазон температур окружающей среды:	-40+70°C
Время установки выходного сигнала:	500мс
Время задержки переключения выхода:	0 ÷ 12c (регулируется)
Длина (L):	140mm ÷ 6000mm
Длина теплового расстояния (Ldt):	100mm ÷ 300mm
Материал корпуса с электроникой:	алюминий или ABS
Материал корпуса:	сталь 316L
Степень защиты корпуса:	IP66
Рабочее давление:	5 МПа
Присоединение к процессу:	G(3/4", 1"), R(3/4", 1"), NPT(3/4", 1"),
	фланцевое, гигиеническое или другое
Macca:	1,5кг
Кабельный ввод:	1x M20x1,5, 2x M16x1,5 или 1xM16x1,5

6. Питание и выход

Каждый датчик WSP-5 оснащён электронным модулем обработки. В зависимости от напряжения питания и требуемого типа выходов в датчик устанавливается один из следующих модулей:

- o PSO1 (AC/DC c реле),
- PSO2 (DC с транзистором),
- PSO3 (AC/DC с бесконтактным электронным переключателем),
- PSO4 (двухпроводной 16/18mA).
- о PSO5 (двухпроводной NAMUR)


I/2020 5/19

• PSO1 (AC/DC c реле)

Это основной электронный модуль, которым оснащён датчик WSP-5. Он характеризуется универсальным напряжением питания AC/DC и релейным выходом.

Таблица 2. Электрические параметры модуля PSO1

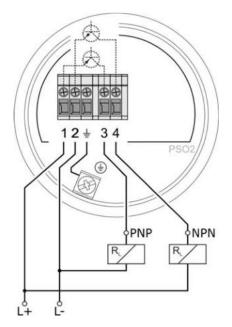
ionaga 2. onekinpa ieekae nap	amempor mooyiii 1 301.
Напряжение питания:	19253B AC, 1955B DC
Потребляемая мощность:	максимум 2Вт
Выход:	реле DPDT
Допустимая нагрузка	4А для 253В АС, 4А для 55В
контактов реле:	DC
Защита:	от обратной полярности,
	короткого замыкания
Гальваническая развязка:	1,5kV

sygnalizacja:

sygnał wyjściowy:

- przekaźnik zasilany

			Sygnalizacja	
Tryb pracy	Poziom	Stan wyjścia	dioda LED żółta	dioda LED czerwona/ zielona
detekcja maksimum MAX (ochrona przed przepełnieniem)	-	3 4 5 6 7 8 Przekaźnik ZASILANY	•	*
		3 4 5 6 7 8 Przekaźnik NIEZASILANY	*	*
detekcja minimum MIN (ochrona przed suchobiegiem)		3 4 5 6 7 8 Przekaźnik ZASILANY	*	*
suchobiegieni)		3 4 5 6 7 8 Przekaźnik NIEZASILANY	•	*


I/2020 6/19

• PSO2 (DC с транзистором)

Этот электронный модуль низкого напряжения. Он оборудован двумя транзисторными выходами PNP+NPN. Он имеет меньшее энергопотребление, чем PSO1 и используется, когда выходной сигнал подключается непосредственно к системе PLC или DCS.

Таблица 3. Электрические параметры модуля PSO2.

onaga 3. Shekiripa leekae napai	nempormodymi 1 302.
Напряжение питания:	1055B DC
Потребляемая мощность:	максимум 1Вт
Выход:	транзистор PNP + NPN
Ток нагрузки выхода (Ⅰ₋):	максимум 350мА
Отстаточный ток(I _R):	< 100μA
Напряжение насыщения	< 2B
транзистора для тока І∟	
Защита:	От обратной полярности,
	короткого замыкания
Гальваническое	1,5kV
разделение:	

sygnalizacja:

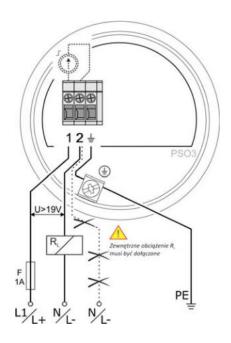
dioda wyłączona

sygnał wyjściowy:

I_c= maksymalnie 350mA I_R< 100μA

Tryb pracy	Poziom Stan		Sygna	Sygnalizacja	
		Stan wyjścia	dioda LED żółta	dioda LED czerwona/ zielona	
detekcja maksimum MAX (ochrona przed przepełnieniem)		1, 1 2 L- ZAMKNIĘTY	•	*	
		1, 3 4 1, 2 0TWARTY	*	*	
detekcja minimum MIN (ochrona przed suchobiegiem)		2 ZAMKNIĘTY	*	*	
sacosegiciii)		1, 3 4 1, 2 OTWARTY	•	*	

I/2020 7/19



• PSO3 (AC/DC с бесконтактным электронным переключателем)

Это электронный модуль, который управляет внешней нагрузкой в виде реле или контактора. Он используется везде, где необходимо управлять мощными промышленными контакторами. Это также позволяет сократить количество проводов, необходимых для использования кабеля с двумя жилами.

Таблица 4. Электрические параметры модуля PSO3.

Напряжение питания:	19253B AC/DC
Потребляемая мощность:	максимум 1Вт
Выход:	бесконтактный электронный
	переключатель
Ток нагрузки выхода (Ӏ₋):	максимум 350мА
Остаточный ток (I _R):	< 5mA
Напряжение на клеммах	максимум 12В
питания:	
Минимальная мощность	>2.5VA для 253B (10мA) или
катушки контактора:	0.5W для 24B DC (20мA)
Максимальная мощность	<89VA для 253B или 8.4W для
катушки контактора:	24B DC
Защита:	от короткого замыкания
Гальваническое	1,5kV
разделение:	

sygnalizacja:

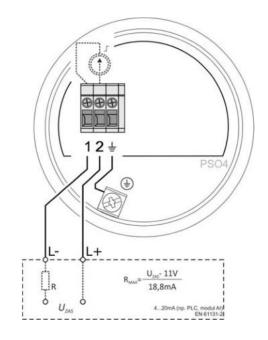
sygnał wyjściowy:

I_L= maksymalnie 350mA

 I_R < 5mA

			Sygna	Sygnalizacja	
Tryb pracy	Poziom	Stan wyjścia	dioda LED żółta	dioda LED czerwona/ zielona	
detekcja maksimum MAX (ochrona przed przepełnieniem)		1°	•	*	
		1••2 I _R PRAD NISKI	*	*	
detekcja minimum MIN (ochrona przed suchobiegiem)		1°	*	*	
333.133.133.21117		1••2 I _R PRAD NISKI	•	*	

I/2020 8/19



PSO4 (двухпроводной 16/18мА)

Это электронный модуль, который используется при наличии аналоговых входов в контроллере или системе DCS без цифровых входов. Этот электронный модуль подключается непосредственно к аналоговому входу 4...20мА, а управляемым сигналом является ток в токовой петле.

Таблица 5. Электрические параметры модуля PSO4.

<u> </u>	
Напряжение питания:	1136B DC
Потребляемая мощность:	максимум 600мВт
Выход:	16/18mA
Ток для низкого	16мА \pm 0,5мА
состояния:	
Ток для высокого	18мА \pm 0,5мА
состояния:	
Напряжение на клеммах	11V
питания:	
Защита:	от обратной полярности,
	короткого замыкания

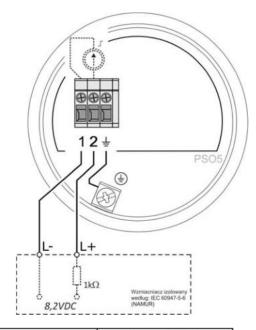
sygnalizacja:

sygnał wyjściowy:

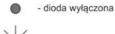
- ~16mA = 16mA±0,5mA,
- ~18mA = 18mA±0,5mA,

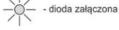
			Sygnalizacja	
Tryb pracy	Poziom	Stan wyjścia	dioda LED żółta	dioda LED czerwona/ zielona
detekcja maksimum MAX (ochrona przed przepełnieniem)		~18mA 2 → • 1 PRĄD WYSOKI	•	*
		~16mA 2 ~ 1	*	*
detekcja minimum MIN (ochrona przed suchobiegiem)		2°———1 PRĄD WYSOKI	*	*
		~16mA 2 ○ • • 1	•	*

I/2020 9/19



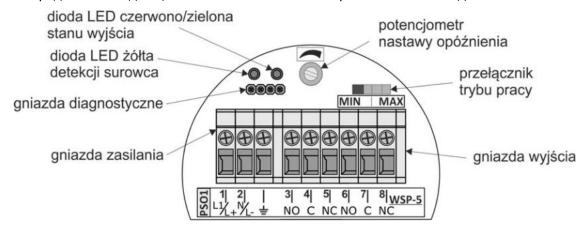
• PSO5 (двухпроводной NAMUR)


Это электронный модуль, отличающийся низким энергопотреблением. Подключается двухжильным кабелем к любому коммутационному модулю с интерйфейсом NAMUR, например FTL325N. Этот модуль регулирует ток в линии питания датчика.


Таблица 6. Электрические параметры модуля PSO5.

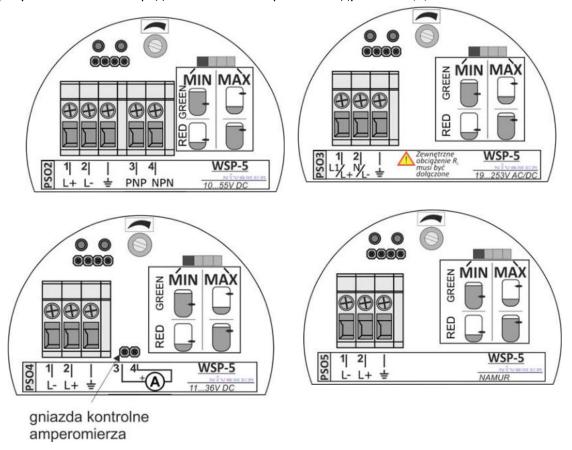
shaqa o. shekinpa leekae hapamempa mooyiin 1 303.				
Напряжение питания:	8,2B DC + 1kΩ			
Потребляемая мощность:	максимум 600мВт			
Выход:	<1mA / >2.2mA			
Ток для низкого состояния:	0,61mA			
Ток для высокого состояния:	2,23.5mA			
Напряжение на клеммах	минимум 4,6В			
питания:				
Защита:	от обратной полярности,			
	короткого замыкания			

sygnalizacja:


sygnał wyjściowy:

<1mA = 0,6...1mA >2,2mA = 2,2...3,5mA

			Sygnalizacja	
Tryb pracy	Poziom Stan wyjścia		dioda LED żółta	dioda LED czerwona/ zielona
detekcja maksimum MAX (ochrona przed przepełnieniem)		<1mA 2 PRAD NISKI	•	*
		>2,2mA 2 >2,2mA PRAD WYSOKI	*	*
detekcja minimum MIN (ochrona przed suchobiegiem)		20————————————————————————————————————	*	*
		>2,2mA 2 > 1	•	*


7. Передняя панель

Каждый электронный модуль PSO1,2,3,4 вибрационного датчика WSP-5 имеет переднюю панель. На передней панели расположены разъём питания, выходной разъём, диагностический разъём, световые индикаторы, потенциометр установки задержки и переключатель режима работы. На рисунке 7 представлен вид лицевой панели с описанием и расположением отдельных элементов.

Rys. 7. Вид на переднюю панель датчика WSP-5 с электронным модулем PSO1.

На рисунке 8 показаны передние панели электронных модулей PSO2,3,4.

Rys. 8. Вид передней панели электронных модулей PSO2,3,4,5.

I/2020 11/19

8. Регулировка и настройки

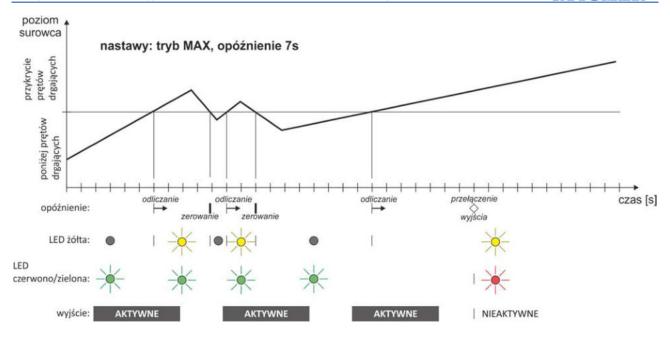
• Режим работы

Каждый датчик WSP-5 может работать в одном из двух режимов: минимум - MIN или максимум - MAX. Режим MAX устанавливается в датчиках WSP-5, которые монтируются в верхней части резервуара, используются для защиты от перелива. Когда жидкость покрывает вибрирующие вилки, красный светодиод загорается, указывая на опасное состояние и выход неактивен (низкий уровень). Когда уровень жидкости ниже вибрирующих вилок, загорается зелёный светодиод и выход активен (высокий уровень).

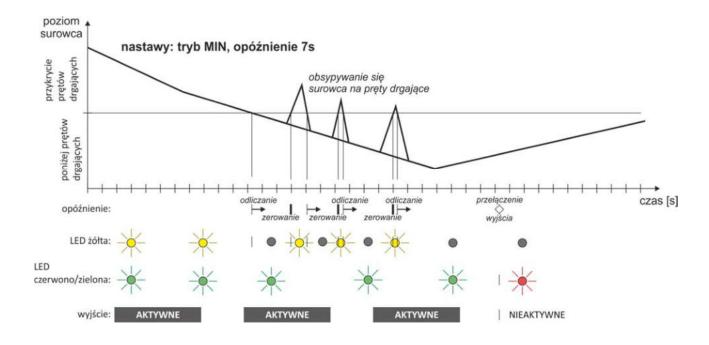
Режим MIN устанавливается в датчиках WSP-5, которые монтируются в нижней части резервуара. Затем они выполняет функцию *защиты от сухого хода*, например насосов. В этом режиме, когда жидкость опускается ниже вибрирующих вилок, загорается красный светодиод, указывая на опасное состояние, и выход активен. Когда жидкость покрывает вибрирующие вилки, загорается зелёный светодиод, и выход неактивен.

Режим работы изменяется переключателем режимов работы, расположенным на передней панели электрического модуля.

.(Położenie _			Sygna	lizacja
Tryb pracy	przełącznika	Poziom	Stan wyjścia	dioda LED żółta	dioda LED czerwona/ zielona
detekcja maksimum MAX (ochrona przed przepełnieniem)			AKTYWNE (STAN WYSOKI) (PRĄD WYSOKI) (WYJŚCIE ZASILANE)	•	*
przepennement) →		NIEAKTYWNE (STAN NISKI) (PRĄD NISKI) (WYJŚCIE NIEZASILANE)	*	*	
detekcja minimum MIN (ochrona przed suchobiegiem)	+		AKTYWNE (STAN WYSOKI) (PRĄD WYSOKI) (WYJŚCIE ZASILANE)	*	*
suchoblegiem) .	-		NIEAKTYWNE (STAN NISKI) (PRĄD NISKI) (WYJŚCIE NIEZASILANE)	•	*



Rys. 9. Режимы работы реле и состояние диодов датчика WSP-5.


• Задержка переключения выхода

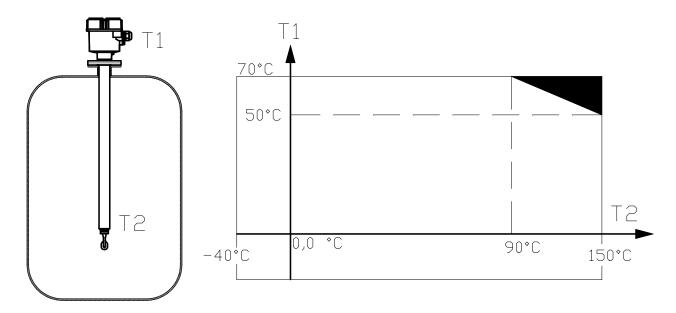
Задержка переключения выхода предотвращает частое переключение выхода в случае пульсации жидкости. Введение задержки вызывает изменение выходного исгнала только тогда, когда вибрирующие вилки находятся в одном состоянии в течение определённого времени, как показано на рисунках 10 и 11.

1/2020 12/19



Rys. 10. Состояние светодиода и выходов датчика WSP-5 при заполнении резервуара в режиме MAX.

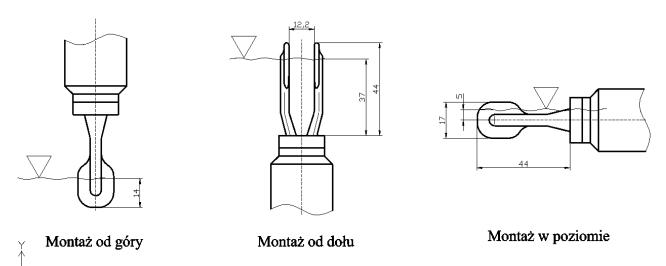
Rys. 11. Состояние светодиода и выхода датчика WSP-5 при опорожнении резервуара в режиме MIN.


Задержка переключения выхода регулируется потенциометром на передней панели электронного модуля. Можно установить задержку от 0 до 12 секунд. Задержка, равная 0с, означает, что выходной сигнал изменяется одновременно с обнаружением изменений состояния вибрирующих вилок, которые в крайних случаях могут происходить каждые 0,5с. Значение задержки в зависимости от положения потенциометра показано ра рисунке ниже.

Rys. 12. Задержка переключения выхода в зависимости от положения потенциометра.

9. Выбор датчика с учётом температуры жидкости и температуры окружающей среды.

Условием правильной работы вибрационного датчика WSP-5A і В является то, чтобы температура внутри корпуса, где расположен электрический модуль, не превышала +70°C. Диаграмма на рисунке 13 показывает влияние температура окружающей среды Т1 и температуры жидкости Т2 на температуру электронного модуля. При температуре T2=90°C температура окружающей среды T1=70° является предельной температурой внутри корпуса с электроникой. Для поддержания нормальной работы датчика при повышении температуры жидкости Т2, температура окружающей среды Т1 должна уменьшаться. Из диаграммы видно, что при температуре жидкости T2=150°C температура окружающей среды Т1 не должна превышать + 50°C. Если температура окружающей среды может превышать 50°C следует использовать датчик WSP-5C с тепловым расстоянием.



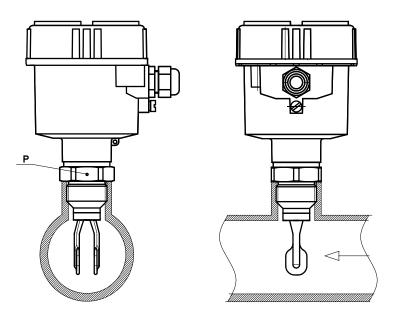
Rys. 13. Зависимость температуры внутри корпуса от температуры жидкости Т2 и температуры окружающей среды Т1.

I/2020 14/19

10. Точки переключения

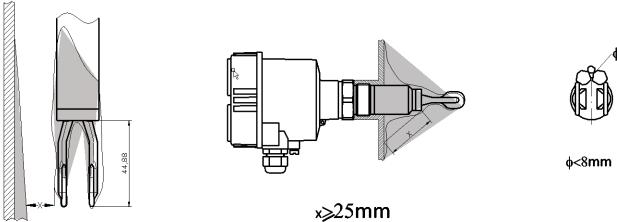
В зависимости от способа установки датчика существуют разные уровни (погружение вибрирующих вилок в жидкость), на которых включается датчик. На рисунке 14 показаны уровни воды с температурой 20°С и давлением p=0бар, при котрых включается датчик.

Rys. 14. Способы установки датчика WSP-5 и соответствующие уровни переключения.

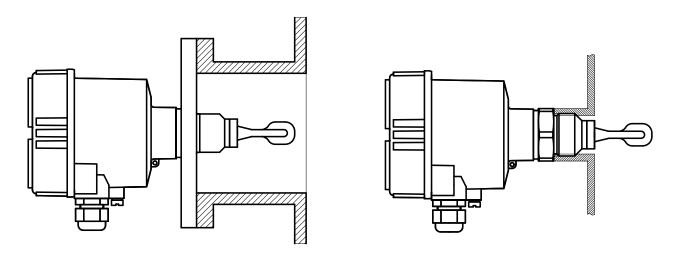

11. Крепление

Датчики WSP-5 могут быть присоедены к разъёмам с дюймовой резьбой "G", "R", NPT, или метрической резьбой, а также к плоским, трёхзажимным и гигиеническим фланцам. Стандартно датчики имеют резьбу "G", "R" и "NPT" с размерами 3/4" и 1". Датчики с резьбой 3/4" имеют на корпусе шестигранную гайку для плоского ключа с шагом S=36мм, а с резьбой 1" шестигранную гайку для плоского ключа с шагом S=41мм.

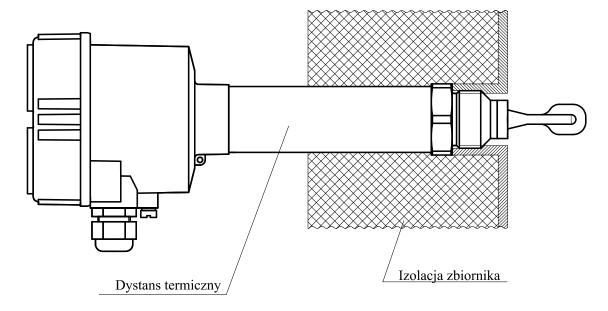
На корпусе или фланце датчики имеют знак "Р", который определяет ориентацию вибрирующих вилок.


Убедитесь, что метка "Р" находится в положении, в котором вилки будут создавать как можно меньшее сопротивление текущей жидкости, рис. 15.

Rys. 15. Правильная установка датчика WSP-5.


I/2020 15/19

Жидкости, которые имеют тенденцию к гелеобразованию или в виде смеси жидкостей и твёрдых частиц такого гранулирования, которые могут оставаться между или на вибрирующих вилках и блокировать их, исключаются от контакта с вибрирующими вилками датчика уровня WSP-5. В обоих случаях это неправильный выбор измерителя жидкости. На рисунке 16 показаны виртикальная и горизонтальная установка устройств, когда жидкости имеют такую же высокую вязкость, как глицерин (10 000cSt). Также показано блокирование вибрирующих вилок твёрдыми частицами в жидкости.


Rys. 16. Условия для установки датчиков при высокой вязкости жидкости (глицерин 10 000cSt) и при наличии в жидкости твёрдых частиц.

На рисунке 17 показана установка датчиков при низкой вязкости жидкости, не превышающей 2000cSt.

Rys. 17. Правильная установка датчиков WSP-5.

На рисунке 18 показана установка датчиков на резервуары с теплоизоляцией. Тепловое расстояние между корпусом и корпусом с электроникой составляет от 100 до 300мм в зависимости от толщины изоляции и температуры жидкости в резервуаре. В результате корпус датчика находится вне изоляции резервуара, а температура внутри корпуса не превышает + 70°С. Дополнительно на тепловом расстоянии может быть сделана тепловая втулка, которая дополнительно снизит теплоотдачу к корпусу с электроникой.

Rys. 18. Установка датчика WSP-5 в резервуар с теплоизоляцией.

После ввинчивания датчика в разъём или прикручивания к фланцу, корпус с электроникой датчика можно повернуть вокруг оси на корпусе так, чтобы сальник находился в нужном положении.

12. Ввод в эксплуатацию

Датчики WSP-5 не требуют регулировки и настройки. Переключатель на передней панели используется для выбора режима работы: минимум - MIN или макисмум - MAX. Когда переключатель находится в положении MAX и резервуар пустой, после подключения источника питания к датчику вибрирующие вилки достигают резонансной частоты и горит зелёный светодиод. После обездвиживания вибрирующих вилок загорается жёлтый диод и начинается отсчёт времени задержки, если настроено время. После замера задержки выход переключается, зелёный диод гаснет и загорается красный диод. Когда переключатель установлен в положение MIN и резервуар пуст, загорается красный светодиод. После блокировки вибрирующих вилок загорается жёлтый светодиод и начинается отсчёт задержки, если настройка была сделана. По окончании отсчёта задержки выход переключается, красный диод гаснет и загорается зелёный диод.

13. Дополнительная информация

Производитель оставляет за собой право вносить конструкторские и технологические изменения, не ухудшающие качество работы датчика.

• Полный список для пользователя

Заказчик получает датчик WSP-5 в отдельной или общей упаковке. В комплект поставки прибора входят:

- гарантийный талон,
- руководство пользователя (документация по эксплуатации и техническому обслуживанию), также доступное на сайте <u>www.nivomer.com</u>

• Код заказа

При оформлении заказа, чтобы ускорить выполнение заказа, используйте следующий код.

I/2020 17/19

WSP-5 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9

1	1 Конструкция вилок: длина, температура и давление процесса		
	<u>А</u> В	- версия компактная, 806000мм, T<100°C, P<5МПа	
	C1	- версия удлиненная, 806000мм, 1<100 С, P<5МПа	
	C2	- версия температурная, 1106000мм, 1<130 С, Р<5МПа	
	D	- версия гемпературная, 1100000мм, 1<250 С, Р<3МПа	
	E		
	Y	- версия с отделённым модулем электроники, 2506000мм, длина кабеля до 10м, T<150°C, P<5МПа	
2	<u> </u>	- версия специальная (под заказ) - мика	
		- длина датчика пишется в мм, в зависимости от конструкции вилок. "L" - это сумма длин резьбы,	
	[L]	удлинительной трубки и вилок	
3	Электронная система: тип, напряжение питания и выход		
•	<u>P1</u>	- система PS01 (AC/DC с реле): источник питания: 19253B AC, 1955B DC; выход: реле DPDT	
	P2	- система PS02(DC с транзистором): источник питания: 1055B DC; выход: транзистор PNP+NPN	
	P3	- система PS03 (AC/DC с бесконтактным электронным переключателем): источник питания: 19253B	
	"3	АС/DC; выход: внешнее реле или контактор	
	P4	- система PS04 (двухпроводной 16/18мА): источник питания: 1136B DC; выход: ток 16/18мА	
	P5	- система PS05 (двухпроводной NAMUR): источник питания 8,2B+1kΩ; выход: ток <1мA / >2.2мA	
4	4 Корпус: материал корпуса, IP, аксессуары		
	OA	- корпус из ABS, IP66	
	<u>OB</u>	- корпус из алюминия с порошковым покрытием, IP66	
	oc	- корпус из стали 304, ATEX Ex de	
	OD	- корпус из стали 304, исполнение гигиеническое	
5	Датчик: материал и обработка поверхности		
	<u>1</u>	- stal 316L, Ra<3,2мкм	
	2	- stal 316L, Ra<1,6мкм	
	3	- stal 316L, Ra<0,8мкм	
	4	- stal 316L, вилки покрыты PFA, EFTF, PVDF, ECTFE, эмаль	
	5	- stal 316L, вилки + трубка покрыты PFA, EFTF, PVDF, ECTFE, эмаль	
	6	- stal 316L, вилки + трубка + фланец покрыты PFA, EFTF, PVDF, ECTFE, эмаль	
6	Присоеди	нение к процессу: тип резьбы, фланца или другое	
_	<u>G1</u>	- цилиндрическая резьба G=3/4"	
	G2	- цилиндрическая резьба G=1"	
	R1	- коническая резьба R=3/4"	
	R2	- коническая резьба R=1"	
	N1	- коническая резьба NPT=3/4"	
	N2	- коническая резьба NPT=1"	
	D1	- сальник G=1,5"	
	K1	- фланец плоский DN25, PN 1040	
	К2	- фланец плоский DN50, PN 1040	
	К3	- фланец плоский DN80, PN 1040	
	T1	- Triclamp DN4050,4	
	Υ	- специальное исполнение	
7	7 Кабельные вводы: количество и размер		
	1D	- один разъём M16x1,5	
	2D	- два разъёма M16x1,5	
	<u>3D</u>	- один разъём M20x1,5	
8	Сигнализа		
	<u>w</u> z	- внутренняя, на передней панели электронной системы - внешняя, на передней панели и на корпусе	
9	<u> </u>		
9			
	CB CF	- des сертификатов - ATEX II 3G Ex de	
	CG	- ATEX II 1/2G Ex de	
	CH	- гигиеническое исполнение	
	CI	- ATEX II 1/2G Ex ia	
	Υ	- другие сертификаты	

подчёркнутые параметры - стандартные параметры производства

I/2020 18/19

Пример заказа датчика WSP-5 может выглядеть так:

3шт - WSP-5C2-3400-P2-OB-2-G1-2D-Z-СВ означает

Датчик WSP-5 в исполнении С для рабочей температуры $t<290^{\circ}$ С, длина L=3400мм, оснащённое системой обработки PSO2 (источник питания DC с транзисторным выходом), в алюминиевом корпусе IP66, в котором поверхность Ra<1,6 μ m, а датчик имеет присоединение к процессу G=1". Датчик имеет 2 кабельных ввода M16x1,5. В корпусе установлены дополнительные светодиоды для индикации состояния выхода. Датчик изготовлен без дополнительных сертификатов.